外文翻譯----橋梁走向未來_第1頁
已閱讀1頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

1、<p><b>  附錄A</b></p><p>  Bridge to the Future</p><p>  The Chao Phraya River Bridge is designed to accommodate marine traffic. The 500 m main span will provid

2、 50.5 m of vertical clearance, and the two towers will be situated away from the main navigation channel.</p><p>  The final component of Thailand's new Outer Bangkok Ring R

3、oad, the eight-lane cable-stayed Chao Phraya River Bridge, will not only alleviate Bangkok's notoriously heavy traffic but also contribute a new architectural symbol to the capital city. By Ruchu Hsu, RE.</p>

4、<p>  The bridge will carry four lanes of traffic in each direction. The upper portion of each tower will have an enclosed chamber for cable anchors, a 1.5 m square opening at the bottom providing easy access for ma

5、intenance and inspection.</p><p>  For the past 20 years, Thailand's capital, Bangkok, has been constructing expressways to lleviate traffic congestion. Among the major expressway projects in the capital

6、 is the Outer Bangkok Ring Road, a 170 km long highway encircling the city. The road is nearly complete; only the eastern half of the southern leg--the Southern Outer Bangkok Ring Road, or S-OBRR--remains to be construct

7、ed. Scheduled for completion in 2007, the 21 km elevated viaduct will incorporate four major interchanges and a </p><p>  In 1996 the Department of Highways retained a joint venture team of consultants to de

8、sign the S-OBRR. The design team included Asian Engineering Consultants (AEC), Thai Engineering Consultants (TEC), and Siam General Engineering Consultants, all of Bangkok; Oriental Consultants, of Tokyo; and Parsons Bri

9、nckerhoff (PB), of New York City. Once the joint venture was formed, designers began a feasibility study of the Chao Phraya River crossing and set about determining the most suitable type of cros</p><p>  In

10、 1999 engineers began to design the S-OBRR. The Chao Phraya River Bridge design was led by PB and supported by AEC and TEC. Conceptual and preliminary designs were pre-pared by PB'S New York staff, and Thai engineers

11、 working in Bangkok with the author completed the subsequent final design. The engineers established four design goals. They wanted a bridge that would (1) be long lasting and easily maintained, (2) enhance the city arch

12、itecturally, (3) be economical and incorporate the maximum amo</p><p>  material, and (4) not disrupt marine traffic the</p><p>  Chao Phraya River during construction. Superstructure true that

13、will carry four traffic lanes in each direction and provide 50.5 m of vertical clearance for marine traffic. The bridge's two A-shaped towers will straddle the 500 m main span and will stand as stylized representatio

14、ns of the traditional Thai greeting, the hands steep led together. The superstructure is a steel frame composite with a concrete deck. Stay cables spaced at 12 m intervals along the edge girders are designed to carry the

15、</p><p>  The hollow legs of the two 187 m high towers are made of reinforced concrete. A horizontal strut just below deck level provides lateral support for the slender legs and reduces deflection. The legs

16、, each supported by two 24 by 24 by 4 m footings, join at the top to form a chamber for cable anchors. Decorative spheres 3 m in diameter and spires 8 m tall at the top of the towers will be gilded in traditional Thai st

17、yle. The two towers--one located in shallow water on the east bank, the other behin</p><p>  The three anchor piers will be situated behind each tower on the bridge's back spans. The piers will maximize

18、the vertical and lateral stiffness of the bridge superstructure and the tensional stiffness of the main-span superstructure and will stabilize the bridge during strong winds. The A-shaped towers will also contribute to t

19、he tensional stiffness of the superstructure. Moment connections between the superstructure and the anchor piers eliminate the need for wind locks, which attach the deck </p><p>  The composite superstructur

20、e includes a rein-forced-concrete deck, steel floor beams, and two teel edge girders. A deck slab that varies in thickness from 260 to directly supports vehicle loads310 mm. The thicker slab segments will extend98.5 m fr

21、om each tower in both directions. Recast deck panels will span between the floor beams but will not fully cover the top flanges of the beams. Cast-in-place (CIP) concrete will be placed on top of the floor beams and the

22、exposed portions of the, flanges </p><p>  To ensure bridge longevity and facilitate deck, replacement operations, engineers will use reinforcing bars instead of post tensioning tendons in the deck slab. Rei

23、nforcing bars will also be used as ties in the footings to resist lateral thrust between the inclined tower legs. Built-up I-shaped steel beams spaced 4 m apart will form the floor beams and will match the 1.625 m height

24、 of the connecting edge girders. The top flanges of the floor beams will follow the cross, slope of the deck. Three </p><p>  The bridge is designed so that the superstructure of the main span can be erected

25、 by delivering the major structural components to the deck from the towers. The box-shaped steel edge girders have high tensional strength and are designed to cantilever during floor beam erection. With an inclined outsi

26、de web and a vertical inside web, this 1.625 m high, box-shaped steel edge girders will deepen to 2.2 m as they approach the ends to match the depth of the concrete box girders in the approaches. The</p><p>

27、  white, will reduce heat absorption. Welded beads will be placed in a spiral pattern along the exterior surface of the HDPE pipes to control cable vibrations caused by wind and rain.. Since the long cables (up to 260 m)

28、 are prone to large-amplitude vibrations, crossties-an effective and economical method of controlling cable vibration-will be installed. The wind ties suppress individual cable resonance by forcing cables with</p>

29、<p>  different mode frequencies to vibrate together.</p><p>  The Post Tensioning Institute, based in Phoenix, requires that stay cables be replaceable. The engineers have designed the Chao Phraya Riv

30、er Bridge so that one stay cable can be replaced while traffic continues on two lanes in each direction. The bridge has also been designed to allow for the accidental loss of any one cable without bridge failure.</p&g

31、t;<p>  The bridge design includes a large chamber on each tower to house cable anchors. The chamber is 8.8 by 3.4 m at the top and 23 by 5 m at the bottom and will provide sufficient space for ladders and platfor

32、ms to directly access all of the cable anchors. A 1.5 by 1.5 m opening in the bottom slab will allow for the lifting of heavy equipment or materials directly from the deck to the chamber. This opening will ease construct

33、ion, inspection, maintenance, and future cable replacement. Each anchor pie</p><p>  The bridge, like much of Bangkok, is located in a floodplain, and there is a 15 m layer of soft clay near the site's s

34、urface. To properly support the towers and anchor piers, engineers will drill shafts 2 m in diameter to a depth of 50 m. The engineers chose 2 m shafts because they possess the lateral bending capacity required for large

35、 foundations in soft soils. To facilitate inspection and maintenance, the designers provided easy access to all of the major structural components. No special equ</p><p>  Because cable-stayed bridges tend t

36、o be highly redundant, the engineers found it necessary to use computers to calculate the multitude of member forces under various loading conditions. EARS& a structural analysis program developed by Larsa, Inc., of

37、Melville, New York, were used in the design. Linear analyses were performed for live loads, wind loads, and temperature loads; nonlinear analyses were performed for dead loads, cable replacements, and cable loss; dynamic

38、 analyses were performed for </p><p>  The bridge deck can experience vortex-shedding vibrations at 25 m/s. The peak deck acceleration was found to be lower than the allowable specifications set forth in 198

39、0 by ASCE'S Committee on Loads and Forces on Bridges. The bridge can withstand buffeting--a random vibration caused by unsteady wind loading arising from turbulence. In particular, the test showed that the bridge is

40、able to withstand wind load distributions having a 100-year return period.</p><p>  The concrete, reinforcing steel, steel shapes, gratings, and HDPE pipes necessary for the S-OBRR'S Chao Phraya River Br

41、idge will be produced locally. Only such specialty items as cable anchorages will be imported. Construction of the bridge began in August and is expected to be completed in early 2007, providing a badly needed solution t

42、o traffic problems and a structure that promises to add to the beauty of this bustling Asian metropolis. </p><p>  The piles. 40 in long and 3 m in diameter, arc driven into the sandy river bottom from a

43、bove the water level. This foundation system was considered to be more effective than concrete piling because of the steel piles’ lateral stiffness and strength. Research was conducted into the possibility of improving t

44、he axial stiffness by means of pressure grout injection at the pile bottom. However, because this method had not before been applied in similar situations and because the operational risks wer</p><p>  On to

45、p of each casing a hollow rectangular vertical shaft of varying cross section was cast in site. The shafts vary in height by as much as 7 m from the middle of the bridge to the ends. The shaft heads include anchors for t

46、he bridge supports, so the shafts had to be positioned within tolerances as small as 10 mm. The top plane of each shaft, measuring just 5 by 6 m, included space for the vertical supports at the edges, jacks for bridge li

47、fting, horizontal supports, and a central lower-level i</p><p>  The acceptable vertical tolerance of the deck was set at ±15 mm, or 1/7000 of the span. Considering the length of the spans, the fact tha

48、t the girder was continuous over multiple spans, and the composite nature of the structure, however, and this standard proved difficult to meet. In consultation with the rail authorities the acceptable tolerance was incr

49、eased to ±40 mm.</p><p>  The hammer sections, identical except for small details, also were reassembled, but here six subsections were involved. These parts were manufactured to within a tolerance of &

50、#177;5 mm. Since the bridge site is between two existing bridges, the height of the parts to be transported was limited to the vertical clearance of the existing structures. Thus the 10.5 m high hammer sections were tran

51、sported not in their upright position but on their sides. On the hammer sections, therefore, the concrete dec</p><p>  The project also included the design and construction of approach structures on both end

52、s of the crossing, because the trains may reach speeds of more than 300 km/h, the approaches must provide a smooth track to enable trains to come from 20 m below mean sea level in the tunnel north of the bridge to 20 m a

53、bove mean sea level at the summit of the bridge, in the middle of the river. The alignment has a maximum slope of 2.5 percent and has a horizontal radius of curvature of 15 km. At the south en</p><p>  Ruchu

54、 Hsu, P.E., M.ASCE, is a supervising structural engineer for Parsons Brinckerhoff, Inc., in New York City. This paper was presented at the 21st Annual International Bridge Conference, which took place in Pittsburgh June

55、12-I6, 2004.</p><p><b>  橋梁走向未來</b></p><p>  過去 20 年里,泰國的首都曼谷,已經(jīng)修筑高速道路以減輕交通擁擠。在這些主要的高速道路之中,位于首都的是曼谷外部的環(huán)形路,一條170千米長環(huán)繞這個城市的公路。這條路就快完全修完,只剩南邊的東邊一半,即:曼谷南面外部的環(huán)形路還沒有竣工,或者說是東南線OBRR還需要修建。 預計

56、在2007年完成,抬高的21千米陸橋將會和四個主要的立交橋和一個斜拉橋位于 Chao Phraya 河川之上,由一個220.5米的主跨和二個500米的邊跨組成,那Chao Phraya 河川橋將會是泰國的最長的橋梁。</p><p>  1996年,公路部共同投資隊聘請顧問來設計 S-N線路OBRR 。設計隊伍中有亞洲的工程顧問 (AEC) ,泰國工程顧問 (TEC),還有來自暹羅的指揮工程顧問,所有的、東方各國

57、、東京、邊區(qū)牧師(PB)和紐約的顧問共同組成了一支探險隊伍,設計師們開始對橫跨Chao Phraya 河川的可行性研究以及有關決定最適當類型進行研究。 隧道和斜拉橋被提出而且評估。然而最后,越來越清楚地認識到橋是最經(jīng)濟的,不會打擾航道交通, 并且最好是把他發(fā)展成為公路立交橋。</p><p>  1999年,工程師們開始設計S-N線路OBRR 。Chao Phraya 河川橋的設計以 PB為主導了而且得到AEC

58、和TEC的支持。 初期的理論設計是由PB的紐約職工完成的,然而后來的結局設計是由在曼谷的泰國工程師完成的。工程師設立了四個設計目標。他們希望這座橋將會 (1) 耐久性好而且維護容易 (2)增加都市建筑場地 (3)節(jié)約并且盡可能地使用當?shù)夭牧?(4) 在構造期間不打斷Chao Phraya 河上航道的交通。</p><p>  因此而產(chǎn)生的設計是 一個有每個方向的四個車道而且能夠提供50.5米垂直凈空給船用的行車的

59、36.7米寬的上部結構。橋的雙面塔將會跨越 500 米 主跨并且將會立如傳統(tǒng)的泰國人問候時的姿態(tài)那樣兩臂結合在一起呈尖塔狀。上部結構是一個由混凝土平臺和一個鋼架組成的集成物。 斜拉鋼絲繩被設計為沿著邊梁以12米為間距作等間隔排列用來承受上部結構的負荷。 在每個邊沿上的三個錨墩將會提供穩(wěn)定性。 橋以一個對稱的縱斷面為特征并且斜坡只達3%. 該橋被設計來承受來自卡車的208千牛的荷載—比以前1996年美國公路橋公會和官方運輸?shù)臉藴室?guī)范第 1

60、6 版中的荷載高30%. </p><p>  這兩個187米高的塔的空心腳是用鋼筋混凝土做成的。在裝飾水平儀下面的一個水平的橫撐可以給細的腳提供側面支撐并且減少撓度。每個塔肢被間隔24米的4米高的塔腳支撐,在頂部結合在一起形成一個擱置鋼絲繩錨造形池。有直徑為3米球體和8米高尖頂?shù)乃攲髠鹘y(tǒng)的泰國式樣裝飾,鍍金。</p><p>  這二個塔,一個位于約旦河東岸的淺水中;另一個在西部的

61、一個碼頭將會被位于遠離主要的航道以便除去和可能橋沖突的可能性并且確保航道的交通不會受到妨礙。三個錨墩將會位于每個塔之后的橋的頂面跨上。 橋墩的勁度將取上部結構和主跨上部結構的垂直和側面勁度的最大值以保證在強烈的風荷載作用下使橋穩(wěn)定。A字形的塔也將會對上部結構的勁度非常有利。上部結構和錨墩之間的活動連結能夠抵消風荷載作用下所產(chǎn)生的位移, 這樣的活動連結能把平臺附在錨墩上并且需要特別的檢驗和養(yǎng)護。和錨墩的這種直接聯(lián)接將會實質性地減少鋼絲繩的

62、壓應力而且可以降低鋼絲繩疲勞的可能性。鋼絲繩而不是那更普遍使用過的承座,將會支撐塔的上部結構而且減少塔的邊梁在某種活載作用下的屈曲彎曲位移。</p><p>  組合結構的上部結構包括預應力混凝土、鋼板梁、兩個鋼邊梁。車輛荷載由一塊從260毫米漸變到300毫米的厚鋼板直接承受。較厚的弓形版將會向每個塔的兩個方向擴充98.5米。 預制節(jié)板將會跨越在樓板梁之間但是不完全覆蓋上梁的上凸椽。現(xiàn)澆混凝土將會放置在樓板梁之上

63、并且暴露出部分凸緣使混凝土平臺與鋼支承架成為集成物。40毫米厚的高強混凝土鋪在上面來保護使之不被腐蝕。為減少曼谷擁擠交通車輛所引起的巨大應力,該橋設計有一個最大坡度為3%的斜坡。為確保橋有足夠的耐久性并且便于維修時施工,工程師將會在厚板中使用高強鋼筋而不用早強鋼筋。 高強桿也將會被當作基腳的連接來使用以抵抗側推力作用下塔肢之間的傾斜。</p><p>  間隔4米分布的組合工字形鋼梁將會組成板梁并且將會與1.62

64、5米高的邊梁的相連接。板梁的上凸椽將會沿著十字接合器平臺的斜坡。 三個縱梁將會在CIP混凝土達到足夠的強度之前為板梁在前的翼緣提供暫時的橫支承??v梁的上凸椽將會足夠寬為預制CIP混凝土的脫模提供足夠的建筑平臺。</p><p>  橋的設計有利于通過傳遞從塔對主要建筑部分到板梁的荷載使上部結構的主跨能夠直立。箱形的鋼邊梁有較強的抗扭強度能夠在樓板梁架設期間被設計用作懸臂。 有一個向外面傾斜的腹板和內部垂直的腹板,

65、 當他們接近端部時候這些1.625米高的箱形鋼梁將會加深到2.2米和箱形混凝土梁所在的深度匹配。頂翼緣將會是1.5 米寬的和底凸緣將會是1.9米寬。為了使混凝土板和鋼梁共同工作,剪板墻筋將會被焊接到翼緣。</p><p>  每個塔的在板梁水平處的四個橡皮緩沖器被設計用于緩解來自上部結構的水平的風負荷載。這些緩沖器除去應該忍性高外,并且造價比較昂貴,便于人工檢驗和替換。這些 緩沖器容易被檢驗并且在其損壞需要替換的

66、時候替換工作可以由單個人來完成。</p><p>  鋼絲繩錨位于邊梁之內,保護鋼絲繩到梁的錨免于自然的侵害。一個圓形的在腹板內部的出入口孔和一個月臺將會在每個鋼絲繩之間的連結板處被修建為對鋼絲繩錨為檢驗和養(yǎng)護提供便利的出入口。因為美學的理由,大梁的底有光滑的棱。</p><p>  橋的上部結構將會被168跟斜拉鋼絲繩其中有24到77跟比較松弛, 沒有焊接的七跟為一股來支持。每股的直徑為

67、15毫米并且遵照美國材料試驗學會國際的關于270 級股的規(guī)范A412-90。橋的設計中運用了最新的防止鋼絲繩腐蝕的工藝,包括鍍鋅和和臘或滑脂的護膜然后把他們套在一層聚乙烯中。被保護的股將會被放在白色的高密度的聚乙烯 (HDPE) 管中,這樣將會減少熱量的吸收。焊頭將會被放在一個螺線型之中沿著對由風和雨所引起的控制索振動的 HDPE 管的外面。由于長鋼絲繩(長達260米)以后是上下的大振幅振動, 枕木一一種控制鋼絲繩振動的效果并且節(jié)儉方法

68、將會被安裝。 風通過強迫鋼絲繩以不同的頻率共振來強迫單跟鋼絲繩震動。</p><p>  學院協(xié)會,位于鳳凰城,指出需要的那一跟斜拉鋼絲繩是可替換的。工程師們已經(jīng)開始當車輛在二個巷的每個方向繼續(xù)行車的時候設計 Chao Phraya 河川橋,這座橋的設計已經(jīng)被設計的可以允許單跟鋼絲繩突然斷裂而不至使橋整體破壞。</p><p>  橋的設計中也包括在每個塔中都有一個用于收容鋼絲繩錨的空間。

69、這個空間在頂部的面積是8.8米*3.4米在底部的面積是23米*5米而且將會提供梯和月臺的充份空間直接地放置所有的鋼絲繩錨。在底板上有一個1.5米*1.5米的開孔,用于使比較重的設備和原材料可以直接地從平臺升高到放置所有的鋼絲繩錨的這個空間。這個開孔將會方便建造、檢驗、養(yǎng)護和未來換鋼絲繩。</p><p>  每個錨墩將會由雙面的柱所組成。這些4米*4米的空心鋼筋混凝土結構有0.6米厚的墻壁方便建造而且確保一個較長

70、的使用壽命。這兩個柱在頂部結合在一起來保證塔的側面穩(wěn)定性。 懸臂雙臂將會從頂部并且沿著每個柱的頂延伸, 這兩個懸臂雙臂將會在錨鋼絲繩被安裝之前平衡混凝土的重量。 懸臂雙臂也將會增加上部結構剛度并且減少邊梁的彎曲力矩。 混凝土自重在錨墩處將會大大減少, 與如此普遍使用過的系條- 向下的方法相反如鋼的桿,鋼絲繩和測釬,需要只有最小的檢驗和沒有養(yǎng)護。</p><p>  這座橋 ,就像曼谷許多橋一樣,位于一個河漫灘上,

71、 而且在基地的表面附近有一個15米厚的軟黏土層。為了適當?shù)刂С炙湾^墩,工程師們將會鉆一個深度為50 米直徑為2米的直井。因為他們持有對軟泥地的大基礎是必需的橫支撐彎曲容量 , 所以工程師選擇2個米直井。</p><p>  為了便于檢測和養(yǎng)護,設計師為所有的主要結構部分提供容易的出入口。 不需要任何特別的設備或腳手架就可以到上部結構的出入口,連接到塔的鋼絲繩或連接到梁的鋼絲繩。一個狹小甬道在提供到達平臺底部的通

72、道,并且邊梁的底部經(jīng)由到處窺視將會是可接近的-一個被特殊化的為養(yǎng)護和檢測在橋之下擴充的升降運送車。</p><p>  因為斜拉橋的高度容易過分的大,工程師發(fā)現(xiàn)使用計算機來計算在各種不同的荷載狀態(tài)下構件的力學狀態(tài)非常是必需的。Larsa,由Larsa公司發(fā)展的結構分析程序,在梅爾維爾、紐約被用于設計。線性分析可以完成對活載、風荷載和溫度荷載的分析;非線性分析可以完成對靜載、鋼絲繩替換和鋼絲繩損失的分析; 電動的分

73、析可以用于地震載荷被的分析和為各種形狀的特征值的以及對風荷載頻率的計算;和一個有限之物- 原赤分析為樓板梁應力分布被運行。PIGLET---由澳大利亞西方大學發(fā)展用于處理三個尺度的土壤結構互相作用--用來計算彎曲力矩和橋的力在那鉆軸。在結構分析中除了用計算機工具外,工程師對工程還對工程假定的告知設計給予重視。他們也訓練了在開始線進量數(shù)據(jù)的精度上的一個鋒利的眼神,盡可能簡單的保存計算者模型減輕數(shù)據(jù)確認方法。</p><

74、p>  因為大跨度的氣體力學的穩(wěn)度橋總是需要特別的關心,所以工程師設計了A字形塔和錨墩組合達成最好的剛度當與一個活動的上部結構連接時,因此而逐漸增加氣體力學的穩(wěn)定性。使用比例為1:60斷面的模型, Rowan Williams Davies &Irwin, Inc. 一個在Guelph安大略省的工程商議公司,在一個風道測試了橋的氣體力學的穩(wěn)定性。 這個試驗測量了靜止的風力和力矩系數(shù)。 其結果依下列各項為:</p>

75、;<p>  1. 設計的風速實質上低于被測試的顫振速率, 這意味著該橋被設計能抵抗較高風速的風力(顫振是一個自動的意義興奮氣體力學的不穩(wěn)定性能增加到非常大的振幅由于扭轉的或垂直的動態(tài).) 橋已經(jīng)被設計到抵抗 56 米每秒的風速, 一個平均每10000年才會出現(xiàn)一次的風力。</p><p>  2. 橋的平臺能承受以 25 m/s流出的旋渦的振動。 尖峰平臺加速度被發(fā)現(xiàn)比在 1980年往前被 ASC

76、E'S 的委員會比準許規(guī)范《橋上的負荷和力》凝結更低。</p><p>  3. 橋能抵抗沖擊--一個亂砌由不穩(wěn)定風所引起載入從亂流出現(xiàn)的振動。特別地,試驗顯示橋能夠抵抗一個以100年為重現(xiàn)期間風載重分。</p><p>  對S-N線路的 Chao Phraya 河川橋所需要的混凝土,預應力鋼筋,主料和 HDPE 管將會在當?shù)厣a(chǎn)。只有鋼絲繩錨這種唯一特殊的材料將會從外面引進 。

77、</p><p>  橋的建設在八月開始并且預計在2007年初完成, 為嚴重的交通問題提供一個必須的解決途徑并且構成熙熙攘攘的亞洲大都市的一大亮景。</p><p>  這種樁,長40米和直徑為3米, 從在水位上面的插入砂質河底之內。這個基礎系統(tǒng)因為鋼樁的側方勁度和強度被考慮所以比混凝土打樁效果更好。關于進入在樁底經(jīng)由壓力薄漿注入改良橋的勁性可能性之內研究被引導。然而, 因為這一個方法在相

78、似的情形中沒有被應用而且因為操作的危險被認為嚴格的,這種方法在增加樁的深度被廣泛應用。</p><p>  預制混凝土沉箱為25米或者10米安裝在在每個碼頭定線之前的樁上。 樁和沉箱之間的剛接通過把投混凝土浸水面下。 樁的設計和彎曲聯(lián)接由結構在水平面上3米的一個30 MN 船碰撞而且允許在軌道不超過80毫米一個橫的變位來控制。一旦樁被安裝而且封閉,沉箱被抽干。 因為套殼的頂是在水位下面 0.5 m ,所以保有踢腳

79、的暫時水被保留,而且空心的套殼然后用混凝土澆注。</p><p>  在每個箱子的頂面處都會安裝一個空心的矩形垂直的直井。 這個直井的寬度沿著高度自橋中央7米漸變到橋尾。 該直井楣包含錨由橋支承,因此這種直井的安置需要比較準確公差不超出10 毫米。 每個直井的最高平面處,測量值僅為5米或6米,其中包括在邊緣處垂直的支承空間、使橋升高的千斤頂、水平支承和中央水平較低的橋面板上的供檢測的距離。</p>

80、<p>  平臺安裝時的所允許的垂直公差不能超過±15毫米, 大約是跨度中的 1/7000。考慮到跨度的長度 , 該梁是的跨度上復式的連續(xù)梁,并且結構的組成性質,雖然事實證明這個標準很難的達到。在和軌條主管當局的請教中可接受的公差增加到±40毫米。</p><p>  對于小村莊區(qū)間, 除了小的細節(jié)以外,也都是提前安裝,但是這里六包括六個部分。 這些零配件被制作的時候所允許的最大公差

81、是5±毫米。既然橋址是位于二個已存在的橋之間,要被傳送的零配件的高度被限制到已存在的結構垂直的凈空之內。 因此10.5 米高的槌打區(qū)間在他們的直立位置中不被傳送而在他們的側面。因此在小村莊區(qū)間上,混凝土板不需要提前安裝。</p><p>  因為列車的速率可能超過 300 km/h , 所以這個工程也含了對叉道兩端的引橋結構的設計和建造,這種引橋在河川的中央中必須能夠為在列車在橋的頂在對在平均海平面上面

82、的 20 m 的在橋隧道北方的平均海平面下面來自 20 m提供一個光滑軌道.準線有一個 2.5% 的最大斜坡并且有 15 km 的一個水平的曲率半徑。 在橋的南端引橋用在平均海平面下面在 3 m 的一個水平儀跑過開拓地的軌道連接橋。</p><p>  Ruchu Hsu ,P.E.M.ASCE,是紐約市的一個公司監(jiān)督結構工程師。 這篇文章在第 21 年刊國際的橋會議上刊載, 發(fā)生在匹茲堡2004.6.12-16

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論