分?jǐn)?shù)布朗運(yùn)動(dòng)及其在保險(xiǎn)金融中的應(yīng)用.pdf_第1頁(yè)
已閱讀1頁(yè),還剩120頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、自19世紀(jì)60年代, Mandelbrot使科學(xué)界注意“長(zhǎng)程相關(guān)性”以來(lái),這個(gè)概念變得越來(lái)越重要。如今,具有長(zhǎng)程相關(guān)性的隨機(jī)模型已經(jīng)激發(fā)了人們很大的研究興趣,并且被成功地應(yīng)用到不同領(lǐng)域.例如,在排隊(duì)系統(tǒng),流體模型,通信網(wǎng)絡(luò)模型,交通模型,儲(chǔ)存模型和金融.參閱[21],[41],[62],[68],[80],[81],[82],[96],[102]和[106]。 分?jǐn)?shù)布朗運(yùn)動(dòng)是一個(gè)常被使用的具有長(zhǎng)程相關(guān)性的過(guò)程.關(guān)于分?jǐn)?shù)布朗運(yùn)動(dòng)的

2、研究最早可追溯到 Kolmogorov[58],并命名為 Wiener 螺線. Mandelbrot和Van Ness 在一篇開(kāi)創(chuàng)性的論文[69]中首次提出了“分?jǐn)?shù)布朗運(yùn)動(dòng)”這一名字。關(guān)于分?jǐn)?shù)布朗運(yùn)動(dòng)的詳細(xì)介紹,參閱[30]或[94]。 分?jǐn)?shù)布朗運(yùn)動(dòng)作為一種模擬工具有時(shí)比標(biāo)準(zhǔn)布朗運(yùn)動(dòng)更加靈活。它被用來(lái)模擬工程學(xué),物理學(xué)和金融數(shù)學(xué)中的各式各樣的隨機(jī)數(shù)據(jù).本文我們集中考慮它在保險(xiǎn)金融中的應(yīng)用。 最近幾年保險(xiǎn)金融正在蓬勃發(fā)展并

3、且取得想當(dāng)豐碩的成果。集體風(fēng)險(xiǎn)理論所關(guān)心的是保險(xiǎn)公司的總資產(chǎn)和風(fēng)險(xiǎn)余額的隨機(jī)波動(dòng).對(duì)于古典風(fēng)險(xiǎn)模型,索賠過(guò)程是用一個(gè)具有空間齊次性和獨(dú)立增量性的復(fù)合泊松過(guò)程來(lái)描述的.根據(jù)過(guò)程的弱收斂,[52]用帶漂移的布朗運(yùn)動(dòng)來(lái)近似風(fēng)險(xiǎn)過(guò)程.在風(fēng)險(xiǎn)理論中,一個(gè)擴(kuò)散近似的現(xiàn)代版本被[34]和[35]給出.由于它們比較完美的性質(zhì),幾乎所有的精算變量包括破產(chǎn)時(shí)間、破產(chǎn)前余額、破產(chǎn)時(shí)赤字的精確結(jié)果都已經(jīng)被得到.近來(lái),兩個(gè)風(fēng)險(xiǎn)模型下的一些最優(yōu)問(wèn)題包括再保險(xiǎn)、投資

4、和分紅被關(guān)注,并且部分已得到解決。 迄今,人們一直用具有馬爾科夫性的隨機(jī)過(guò)程來(lái)描述索賠過(guò)程。但在大部分情形下,保險(xiǎn)公司的索賠過(guò)程呈現(xiàn)出長(zhǎng)程相依性:給定時(shí)刻t后過(guò)程的行為,不僅依賴于£時(shí)刻的信息,而且還依賴于時(shí)刻t以前的歷史.這種現(xiàn)象是不容忽視的并且很可能對(duì)不同的問(wèn)題產(chǎn)生影響,倒如償付能力,定價(jià)及最優(yōu)再保險(xiǎn)水平等等。因此,最近分?jǐn)?shù)布朗運(yùn)動(dòng)被用來(lái)模擬保險(xiǎn)公司可能面臨的索賠, (參閱[3],[20],[32],[33],[75]和 [

5、76])。 在幾何布朗運(yùn)動(dòng)的框架下, Black和Scholes建立了著名的期權(quán)定價(jià)理論。然而,古典金融資產(chǎn)的數(shù)學(xué)模型仍不完善.兩個(gè)明顯的問(wèn)題存在于Black-Scholes公式中,即金融資產(chǎn)的價(jià)格過(guò)程不總是高斯和馬爾科夫的.為了更好地描述金融資產(chǎn)的價(jià)格,人們引入了更一般的模型,例如重尾Levy過(guò)程和隨機(jī)波動(dòng)率模型.后來(lái),通過(guò)重標(biāo)極差法(R/S),研究人員發(fā)現(xiàn)證券市場(chǎng)的波動(dòng)有明顯的持久性,然后他們?cè)囍梅謹(jǐn)?shù)布朗運(yùn)動(dòng)模擬股價(jià)和其他

6、資產(chǎn)價(jià)格,參閱[36],[37]和[70]. 研究包括分?jǐn)?shù)布朗運(yùn)動(dòng)的隨機(jī)微分方程所描述的系統(tǒng)是很自然的.在此體系下,一些標(biāo)準(zhǔn)問(wèn)題,例如預(yù)報(bào)、參數(shù)估計(jì)和濾波已經(jīng)得到了很好的解決,參考[12],[14],[38],[54],[55],[56],[60],[78]和[86].保險(xiǎn)和金融中的優(yōu)化問(wèn)題已經(jīng)吸引了人們很大的興趣。然而,大部分的結(jié)果是在馬爾科夫控制系統(tǒng)下得到的.所以,在更廣的環(huán)境下研究最優(yōu)控制問(wèn)題有其理論和實(shí)際價(jià)值。最近人們開(kāi)

7、始注意到分?jǐn)?shù)布朗運(yùn)動(dòng)擾動(dòng)的系統(tǒng)下的最優(yōu)控制問(wèn)題。例如,[23]嘗試著去解一般的最優(yōu)問(wèn)題。[46]和[47]奠定了分?jǐn)?shù)布朗運(yùn)動(dòng)市場(chǎng)上最優(yōu)理論和最優(yōu)消耗的基礎(chǔ)。[49]研究了stop-loss-start-gain投資組合并且給出了標(biāo)準(zhǔn)期權(quán)定價(jià)的內(nèi)在價(jià)值和時(shí)間價(jià)值的Carr-Jarrow分解。另一方面,線性二次規(guī)劃是一個(gè)典型而且重要的隨機(jī)控制類,它可以被解決通過(guò)一個(gè)相關(guān)的黎卡提方程。就我們知道的,[57]得到一個(gè)有限時(shí)間區(qū)間上簡(jiǎn)單線性二次規(guī)

8、劃的完備解.[51]考慮了分?jǐn)?shù)布朗運(yùn)動(dòng)所擾動(dòng)下隨機(jī)線性系統(tǒng)的一些最優(yōu)控制問(wèn)題。盡管如此,LQ問(wèn)題仍沒(méi)有被完全展示。所以,我的博士畢業(yè)論文主要致力于分?jǐn)?shù)布朗運(yùn)動(dòng)擾動(dòng)體系下,保險(xiǎn)金融中LQ問(wèn)題的進(jìn)一步研究。 但是,對(duì)于分?jǐn)?shù)布朗運(yùn)動(dòng)隨機(jī)控制問(wèn)題的研究,不可避免地要涉及到關(guān)于它的隨機(jī)微分,相關(guān)的隨機(jī)積分和微分方程。因?yàn)榉謹(jǐn)?shù)布朗運(yùn)動(dòng)不是半鞅,極其豐富的半鞅隨機(jī)積分理論不能直接應(yīng)用。下面,我們使用最近在[26]中定義地關(guān)于分?jǐn)?shù)布朗運(yùn)動(dòng)的隨機(jī)

9、微分。另外,由于分?jǐn)?shù)布朗運(yùn)動(dòng)的非馬氏性,著名的Hamilton-Jacobi-Bellman 方程不能被應(yīng)用但是我們可以采用鞅方法和完全平方的方法去解決相應(yīng)的控制問(wèn)題。 本篇論文的結(jié)構(gòu)和內(nèi)容安排如下: 第一章,我們介紹了分?jǐn)?shù)布朗運(yùn)動(dòng)的定義、性質(zhì)及其關(guān)于分?jǐn)?shù)布朗運(yùn)動(dòng)隨機(jī)積分理論的主要結(jié)果。 第二章,我們主要研究了分?jǐn)?shù)布朗運(yùn)動(dòng)擾動(dòng)下的古典風(fēng)險(xiǎn)過(guò)程的最優(yōu)輸入問(wèn)題。通過(guò)完全平方的辦法,最優(yōu)控制策略的分析解被得到.另外,我

10、們還得到相應(yīng)的最優(yōu)值函數(shù)。 第三章,我們?cè)趲品謹(jǐn)?shù)布朗運(yùn)動(dòng)的風(fēng)險(xiǎn)模型下,考慮了保險(xiǎn)公司的最優(yōu)輸入和投資問(wèn)題.我們給出了最優(yōu)策略存在的充分條件。借助于兩種不同的辦法,最優(yōu)策略的解被給出.另外,我們導(dǎo)出了相應(yīng)的最優(yōu)值函數(shù).最后,兩種特殊的情況被考慮。 第四章,在風(fēng)險(xiǎn)需求和投資兩種控制下,我們研究了動(dòng)態(tài)均值-方差問(wèn)題.基于HJB方程的粘性解和拉格朗日乘子技術(shù),我們給出了古典的 Cramér-Lundbetg模型和擴(kuò)散模型下有

11、效前沿和有效策略的閉形式的解。 第五章,我們研究了動(dòng)態(tài)均值-方差投資組合選擇問(wèn)題,其中風(fēng)險(xiǎn)過(guò)程是被分?jǐn)?shù)布朗運(yùn)動(dòng)擾動(dòng)的古典風(fēng)險(xiǎn)過(guò)程.有效前沿和相應(yīng)的有效策略也被得到,并且與標(biāo)準(zhǔn)布朗運(yùn)動(dòng)情況下的結(jié)果進(jìn)行了比較。 第六章,我們考慮了在分?jǐn)?shù)Black-Scholes市場(chǎng)上,動(dòng)態(tài)連續(xù)時(shí)間的均值-方差投資組合選擇問(wèn)題.有效前沿和相應(yīng)的有效策略也被導(dǎo)出.我們展現(xiàn)了在分?jǐn)?shù)布朗運(yùn)動(dòng)的均值-標(biāo)準(zhǔn)差圖上有效前沿仍然是一條直線.最后,我們?cè)跀?shù)值

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫(kù)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論