

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、南京航空航天大學(xué)碩士學(xué)位論文用最優(yōu)化方法求解大型矩陣特征值問(wèn)題姓名:錢(qián)小燕申請(qǐng)學(xué)位級(jí)別:碩士專(zhuān)業(yè):計(jì)算數(shù)學(xué)指導(dǎo)教師:汪曉虹20070301用最優(yōu)化方法求解大型矩陣特征值問(wèn)題 iiAbstract Firstly the source and the development of computing eigenvalues is summarized. Then a new truncated Newton method is propo
2、sed to solving the extreme eigenvalue of large- scale sparse symmetric matrix. It is well known that the Hessian matrix of Rayleigh quotient function is nearly singular and bad conditioned as iteration approaches the opt
3、imal. To overcome this, a new strategy which requires that the correction vector is orthogonal to the current approximate eigenvector is proposed. Under the strategy, the Hessian matrix of the Rayleigh quotient is positi
4、ve definite as the iteration sufficiently approaches the minimal extreme eigenvalue, thus the sufficient optimal condition holds. In order to accelerate the convergence rate of the minimal extreme eigenvalue, we augment
5、the subspace by the computed modified Newton direction, thus a subspace accelerated truncated Newton method is given. The convergence of the method is proved; further numerical experiments are done to demonstrate the con
6、vergence analysis. Similar to the single eigenvalue case, block truncated Newton and subspace accelerated block truncated Newton method in several extreme eigenvalues case are proposed. Theoretical analysis and numerica
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫(kù)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 同倫方法求解矩陣的特征值.pdf
- 求解Toeplitz矩陣束廣義特征值問(wèn)題的預(yù)處理方法.pdf
- 求解大型對(duì)稱(chēng)正定toeplitz矩陣特征值問(wèn)題的不精確newton法
- 求解大型對(duì)稱(chēng)正定Toeplitz矩陣特征值問(wèn)題的不精確Newton法.pdf
- 求解矩陣特征值問(wèn)題的Inverse-free Krylov子空間方法.pdf
- 求解大型對(duì)稱(chēng)特征值問(wèn)題的改進(jìn)塊Jacobi-Davidson方法.pdf
- 計(jì)算大型稀疏對(duì)稱(chēng)矩陣極端特征值問(wèn)題的Lanczos型方法.pdf
- 兩種求解大型對(duì)稱(chēng)正定矩陣極大特征值問(wèn)題的修正BFGS算法.pdf
- 求解大規(guī)模非對(duì)稱(chēng)矩陣特征值問(wèn)題的精化塊Lanczos方法.pdf
- 矩陣的逆特征值問(wèn)題.pdf
- 冪法求解矩陣主特征值的加速方法畢業(yè)論文
- 求解大型對(duì)稱(chēng)特征值問(wèn)題的加速與預(yù)處理技術(shù).pdf
- 幾類(lèi)矩陣的逆特征值問(wèn)題.pdf
- 求解對(duì)稱(chēng)矩陣特征值問(wèn)題的Lanczos算法的改進(jìn)及分析.pdf
- 求解大型對(duì)稱(chēng)稀疏特征值問(wèn)題的不精確Newton法.pdf
- Jacobi矩陣的特征值反問(wèn)題.pdf
- 求解大型對(duì)稱(chēng)稀疏特征值問(wèn)題的預(yù)處理和加速技術(shù).pdf
- 求解特征值互補(bǔ)問(wèn)題的ABS算法.pdf
- 幾類(lèi)特殊矩陣特征值反問(wèn)題與矩陣方程問(wèn)題.pdf
- 廣義周期Jacobi矩陣特征值反問(wèn)題.pdf
評(píng)論
0/150
提交評(píng)論