

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
1、<p> 本科生畢業(yè)設計(論文)外文翻譯</p><p> 題目: A new Semiconductor Thermometer for Geothermal Measurements </p><p> 學 院: 信息科學與工程學院 </p><p> 專業(yè)班級: 電信1002班
2、 </p><p> 學生姓名: </p><p> 指導教師: </p><p> 2014年3月16日</p><p> A new Semiconductor Thermometer for Geothermal Measurement
3、s </p><p> By SATYABRATA DATTA1 ) </p><p> Summary :A portable solid state device designed and constructed for the measurement of temperature variation with depth inside a
4、borehole is described. Saturation current (which is highly dependent on ambient temperature) in a reverse biased PN junction has been utilised for the purpose of measurement. The equipment is inexp
5、ensive and possesses several advantages over other types of instruments for geothermal measurement regarding simplicity i</p><p> 1. Introduction </p><p> Usually, thermistors
6、are utilised as temperature pick-up element in borehole geothermal measurements [1]2 ) . This is chiefly because thermistors have high negative temperature coefficient of resistance. In the method
7、of measurement with thermistor, a resistance bridge is used in association with an oscillator [2] or a D.C. [3] voltage source. A thermistor with the cable forms one arm of the bridge. Out-o
8、f-balance volt- age due to change</p><p> The design and construction of the equipment described in this paper was under- taken for the use of a glacier expedition party of the Ge
9、ological Survey of India to study temperature variations with depth inside boreholes in glacier. Obviously, the equipment to suit the purpose should be light and simple in construction, and its
10、 performance should not be susceptible to adverse surface climatic variations likely to be encountered. </p><p> 2. Description </p><p> The working principle of the instrumen
11、t is as follows: </p><p> The current (I) flowing through a PN junction is given by the relation </p><p> I ≈ i0 (e V/VT -1), (1) </p>
12、<p> Geophysics Division, Geological Survey of India, Calcutta-16 (India). - This paper is published by the kind permission of the Director General, Geological Survey of India. </p><p> Numbers
13、 in brackets refer to References, page 126.</p><p> Where io = junction saturation current, </p><p> V = applied junction voltage which is + ve in the forward direction, <
14、;/p><p> VT = Junction barrier voltage = (K T)/q, </p><p> K = Boltzman constant, </p><p> T = Junction temperature in 0 K</p><p> q = electronic cha
15、rge. </p><p> When the junction applied voltage is in the forward direction (+ ve), the exponential term in equation (1) predominates and as a result the current increases exponent-
16、 tally with applied voltage. For applied voltage several times larger than VT (VT is about 26 mV at 25 0 C )in the reverse direction, the current becomes independent of the applied voltage and
17、 practically remains constant at the saturation current level i0 so long as </p><p> The electronic circuit diagram of the instrument is shown in figure 1. Two reverse biased base-
18、collector PN junctions of Germanium transistors are connected in parallel so that individual saturation currents of the two junctions add up. These two transistors in parallel form temperature se
19、nsing head and are in thermal contact with the borehole fluid. Resultant saturation current is then amplified by a third transistor which acts as a </p><p> Vol. 61, 1965/I1) A new
20、 Semiconductor Thermometer </p><p> A photograph of the complete instrument consisting of the surface equipment, cable wound in the winch and also the probe is shown in figure 3. The two sensing transist
21、ors together with the amplifying transistor are mounted in a perspex block which is a poor thermal conductor with the metal caps protruding outside so that they can attain ambient temperature in short time. This perspex
22、block is cemented at the end of a perfectly watertight brass tube. A thin copper cup (not shown in the photogra</p><p> It is well known that the performance of a D.C. transistor current amplifier is highly
23、 affected by the changes in the ambient temperature. This is mainly due to the shift in the operating point caused by the changes in current gain factor and i0 with temperature. For this, the amplifier cannot be incorpor
24、ated in the surface equipment which may be subjected to unforeseen temperature fluctuations during operation. To avoid the effect of amplifier drift on the temperature measurement,the amplifying</p><p> pro
25、be end and the resultant variation of i which is equal to 2(1 + β) i0 is noted for measurement. For operation, the probe with the cable is lowered inside the borehole upto the required depth and the current indica
26、ted by the microammeter in the steady state which is reached in about two minute's time, is noted. The temperature under measurement is then deduced from the calibration curve. </p><p> 3. Conclusion a
27、nd discussion </p><p> The present instrument has been specially designed for the study of temperature inside a glacier borehole. The measurement accuracy is dependent on the temperature under measurement.
28、At low temperature (near --20 0 C) when the current i is small, the measurement accuracy is mainly limited by the meter sensitivity. The limitation in accuracy at such low temperature is also due to the fact that the su
29、rface leakage current, however small it may be made, becomes comparable to the saturation current</p><p> This instrument suffers from the common draw back due to drift as the other type which utilises ther
30、mistor caused by the unavoidable change in the characteristic of the sensing element due to aging. Effect of this drift in the present instrument is small as the calibration curve has been found to repeat itself with
31、out any appreciable deviation. Similar instrument with some modifications, if necessary may also be utilised for the study of temperature variations with depth in oceanographic i</p><p> 4. Acknowledgemen
32、ts</p><p> The author is grateful to Sri L. N. KAILASAM, Chief Geophysicist for his keen interest in the work and encouragement, and to Sri D. GUPTA SARMA, Senior Geophysicist for his helpful suggest
33、ions. </p><p> REFERENCES</p><p> [1] A. D. MISENER and A. E. BECK, The measurement of heat flow over land, Methods and Techniques in Geophys. 1 (1960), 10. </p><p> [2] G. N
34、. NEWS~EAD and A. E. BECk, Borehole Temperature measuring Equipment and Geothermal flux in Tasmania, Austral .J. Phys. 6 (1953), 480.</p><p> [3] A. C. ANDERSON, Temperature measurement with thermistors,
35、Electronic and Radio Engineer 35 (1958), 80. </p><p> (Received 12th May 1965) </p><p> 一種新型的測量地熱的半導體溫度計</p><p> By SATYABRATA DATTA1 </p><p> 摘要: 一種便攜式的呈固態(tài)的被設計和
36、構造成,為了測量溫度變化在鉆井內部較深的區(qū)域在如下被描述。 飽和電流(很大程度上取決于于周圍環(huán)境的溫度)在反向偏置的PN結中已經被用來達到測量的目的。 設備并不是十分昂貴并且具有一些優(yōu)勢在設備的簡易的結構和操作方面上,同比于其他類型的測量地熱的測量儀器。 </p><p> 1.介紹 </p><p> 通常來說,熱敏電阻被用作溫度的取樣元件在鉆井的地熱溫度測
37、量[1])。這主要是因為熱敏電阻有很高的負溫度阻抗系數。在用熱敏阻抗測量溫度的方法中,一個電阻橋被用來與一個振蕩器和一個直流電壓源相連接。一個帶有電纜的熱敏電阻形成一個反比的電橋。失去平衡的電壓由于熱敏電阻的改變是由于溫度的改變被記錄在被放大之后,當帶有電纜的熱敏電阻被下放于鉆井之中后。在測試下的溫度被從一個校準圖表或校準曲線中所展示的讀取后,不平衡的電壓反抗溫度在實驗室預先的構造中并且是被控制得情況下。電壓源的錯誤在這種測量溫度的方法
38、中很大程度上是由于熱敏電阻和放大器的特性的漂移所導致的,同樣由于不可預料的改變在電纜和其他的電阻橋臂中。</p><p> 被描述在這片論文當中這個儀器的設計和構造是被應用在印度地質調查的冰川探險隊當中,在印度地質調查中研究溫度的變化隨著在冰川鉆井內部中深度的變化。很明顯地,這個儀器為了適應冰川探險隊的這個調查目的應該既輕便且結構簡便,同時這個儀器的性能不應該容易受表面很容易遭受到的相反氣候變化的影響。
39、 </p><p><b> 2 .描述</b></p><p> 儀器的工作原理如下所示:</p><p> 電流(I)流經PN偏節(jié)有以下關系: I ≈ i0 (e V/VT -1), (1)</p><p> 1) Geophysics Division, Geolog
40、ical Survey of India, Calcutta-16 (India). - This paper is published by the kind permission of the Director General, Geological Survey of India. </p><p> 2) Numbers in brackets refer t
41、o References, page 126. </p><p><b> 其中 </b></p><p><b> i0是結飽和電流,</b></p><p> V是應用結電壓也就是 +ve 正向電壓,</p><p> VT 是結勢壘電壓= (K T)/q, ,</p&g
42、t;<p><b> K是波爾茨曼常數,</b></p><p> T 是節(jié)溫度在0攝氏度(單位:攝氏度)</p><p><b> Q是電子電荷量。</b></p><p> 當結的應用電壓是正向電壓(+ve)時,在方程(1)中的指數項占主導,因此結果是電流隨著應用電壓呈指數次增加。因為應用電壓幾倍
43、大于VT(VT是在25攝氏度時是26mv)在相反的方向,電流變得獨立于應用電壓,并且應用電壓實際上保持恒定不變的在飽和電流i0的級別,只要在發(fā)生故障或者雪崩電壓不超過應用電壓。實際上飽和電流形成是由于因為地熱的溫度在P區(qū)和N區(qū)產生的少數載流子遷移運動而產生地電流。因此,飽和電流的大小很大程度取決于溫度和實際的指數增加方式。對于這個被設計的儀器,對于這個被設計的高度依賴于飽和電流,這個飽和電流實際上不受電壓源的影響的特性被應用在測量溫度的
44、目的上。</p><p> 對于這個測溫儀器的電子電路的電路圖示分析如下圖1所示。鍺晶體管的兩個反偏集電極PN結以并聯方式鏈接以便兩個結的各自的飽和電流的疊加。兩個晶體管以并聯的方式置于溫度感測頭并且熱接觸鉆井內的液體。合成的飽和電流被第三個作為直流電流放大器的晶體管來放大。被放大的電流疊加上全部的飽和電流的值通過一個敏感的微安培計的探測結來測量。電流流經這個儀表得到2 (1 + β )倍的i0, β是電
45、流放大器的放大倍數。</p><p> Vol. 61, 1965/I1) 一種新型的半導體測溫計</p><p> 照片內包含了一套完整的儀器設備,包括了表面設備,電纜絞車的傷口以及如圖所示 3 的探針。兩個探測晶體管與放大器的晶體管一起被安裝在溫度傳導比較差的導體有機玻璃載體中,并且?guī)в醒由斐鰜淼慕饘倜币员氵@個儀器在短時間內可以測量得到外界的溫度。這個有機玻璃載體在底部以注入的方式
46、與防水的黃銅完美相連(構造成完全防水并且密封的空間)。一個薄銅杯(在照片中沒有顯示出來)在與晶體管的熱接觸中被用作保護晶體管在測溫的過程中可能產生的各種破壞,當探針被下放于鉆井的內部時。儀器的表面包含了一個有兩節(jié)干電池提供的電壓的電壓源,這兩節(jié)干電池同時串聯在一個靈敏安培表上來調節(jié)分流以便這個靈敏安培表可以測量電流在零下18度到零上10的變化區(qū)間范圍之內。一個雙芯的電纜從儀器的表面接出被連進底部的黃銅管探針中并且電纜與探針的相聯處是被完
47、全防水的環(huán)形密封給封閉住的(同樣也是構造成完全封閉防水,以保證測量精度)。必要的電子線路的聯接已經被完成在探針中,并且采取了一些特別的措施以確保儀器表面在電纜導體和晶體管的通道之間沒有電流的泄露。校正曲線圖解釋了變化log10i,電流i以毫安級的大小通過儀表對抗溫度(t)在0攝氏度的結構,</p><p> 眾所周知的是直流晶體管電流放大器非常容易被外界溫度的變化所影響。這主要是由于操作點的轉換所引起的電流增益
48、和i0的的變化在溫度的影響下。針對于此,放大器不能被合并在表面儀器中,如合并在表面儀器中可能會遭受不可預見的溫度波動在操作過程中。為了避免在測量溫度時的漂移對于放大器的影響,其放大作用的晶體管同樣也被安裝在有機玻璃塊中位于探針底部并且電流i的變化區(qū)域是 2(1 + β) i0是在測量中得到的。</p><p> 對于操作來說,探針與電纜被下放于鉆井中直到達到所需要的深度并且又安培計顯示的呈穩(wěn)定狀態(tài)打到大概兩
49、分鐘左右即可被記錄。測量的溫度隨后被對比同校準曲線。</p><p><b> 3.總結與討論</b></p><p> 目前這個儀器僅僅是專門被設計用來研究冰川鉆井年內部的溫度。測量的精度依賴于測量時的溫度。在低溫的情況下(接近零下20攝氏度時),這時測量電流非常小,測量的精度主要局限于靈敏安培表的靈敏度。在精確度上的局限在如此低的溫度中同樣也有一部分原因是由于
50、儀器表面電流泄露的事實,然而這是可以被控制在非常小的范圍內的,變得可以與飽和電流相比。這個被設計的儀器運輸非常方便適應于的溫度介于零下15攝氏度到零上10攝氏度。測量精度大概是0.2攝氏度,0.8攝氏度以及0.05攝氏度當測試的溫度分別在在零下10攝氏度,0攝氏度,以及零上5攝氏度。這個儀器可能被制造的更加靈敏,通過增加并聯探測晶體管的數量或者通過另一種方法通過增加額外的級聯放大器。同樣的原理可能被用在更高的溫度測量當中。必須被提及的是
51、在接觸過程中最高的溫度不應該超過正常的晶體管的適應的工作溫度(大概在50攝氏度對于鍺晶體管來說)。對于硅晶體管來說卻是很有必要減少電壓源的電壓為了削弱放大器集電極耗散率。</p><p> 這個測溫儀器不受好評由于常見的儀器故障回收,由于產生的飄移當使用熱敏電阻所引起的在探測原件上不可避免的變化由于年代問題。目前的儀器由于漂移所產生的影響是很微小的當校準曲線重復刻畫時,基本上沒有任何明顯的偏差。相似的一些有所改
52、變的儀器,如果有必要的話可能也會被用作研究溫度的變化在深海調查中。</p><p><b> 4.鳴謝</b></p><p> 作者非常感謝Sri L. N. KAILASAM ,首席地球物理學家,感謝他的工作興趣和鼓勵,并且感謝Sri D. GUPTA SARMA,高級地理學家,感謝他有價值的建議。</p><p><b>
53、; 5 .參考書目</b></p><p> [1] A. D. MISENER and A. E. BECK, The measurement of heat flow over land, Methods and Techniques in Geophys. 1 (1960), 10. </p><p> [2] G. N. NEWS~EAD and A. E.
54、 BECk, Borehole Temperature measuring Equipment and Geothermal flux in Tasmania, Austral .J. Phys. 6 (1953), 480.</p><p> [3] A. C. ANDERSON, Temperature measurement with thermistors, Electronic and Radio
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- &amp#183;半導體溫度計的設計實驗報告
- 數字溫度計外文翻譯
- 比較體溫計和常用溫度計教法
- 一種基于高溫輻射的半導體溫差發(fā)電器的研究.pdf
- 【計量標準】jjf 1107-2017 測量人體溫度的紅外溫度計校準規(guī)范
- 使用紅外線鼓膜溫度計測量鼓膜溫度的準確性外文翻譯
- 使用紅外線鼓膜溫度計測量鼓膜溫度的準確性外文翻譯
- 15:液體溫度計的構造與工作原理
- 15:液體溫度計的構造與工作原理
- 使用紅外線鼓膜溫度計測量鼓膜溫度的準確性外文翻譯
- 半導體溫度控制儀的研制.pdf
- 半導體溫度控制儀硬件設計
- 使用紅外線鼓膜溫度計測量鼓膜溫度的準確性外文翻譯.doc
- 使用紅外線鼓膜溫度計測量鼓膜溫度的準確性外文翻譯.doc
- ds18b20 數字溫度計外文翻譯
- 溫度與溫度計
- ds1820 單總線數字溫度計外文翻譯
- 外文翻譯---ds18b20 數字溫度計
- 溫度和溫度計
- 數字溫度計論文數字溫度計設計論文
評論
0/150
提交評論